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Abstract: We generalize the calculation of cosmic superstring reconnection probability to

non-trivial backgrounds. This is done by modeling cosmic strings as wound tachyon modes

in the 0B theory, and the spacetime effective action is then used to couple this to back-

ground fields. Simple examples are given including trivial and warped compactifications.

Generalization to (p, q) strings is discussed.
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1. Introduction

There has been a recent surge of interest in the possibility that superstrings may be ob-

served as cosmic strings stretched across the sky [1 – 4]. An important parameter in their

observation is the intercommutation probability P , the likelihood that two cosmic strings

approaching each other will reconnect to form a kinked shape. This quantity determines

how many strings will be present in the present universe, and may also serve to differ-

entiate what type of cosmic string it is [5]. Additionally, since superstrings are highly

sensitive to any background present, they may also provide information about e.g. extra

dimensions. While order-of-magnitude estimates of how backgrounds would influence the

intercommutation probability have been made, no rigorous technique has existed. The

purpose of the present article is to develop a simple method for calculating tree-level re-

connection probability in slowly-varying backgrounds. The driving motivation behind this

study is that by examining the relationship between background and intercommutation

probability, measurement of the latter could yield information about the former.

2. Interactions and backgrounds

After cosmic strings have formed through some symmetry-breaking mechanism, they do

not sit idly. Rather, their tension demands that they whip through space at nearly the

speed of light, often colliding with themselves or other strings. While gauge vortex cosmic
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strings intercommute with probability near unity [6], for superstrings this is a scattering

cross-section calculated by summing the relevant amplitudes:

P =
1

4E1E2v

∑

final

|Mwinding+winding→kink|2 .

Rather than calculate this directly, for simple tree-level reconnection calculation it is more

convenient to use a method introduced by Polchinski [7] whereby the optical theorem is

used to express the answer in terms of the forward scattering amplitude:

P =
1

4E1E2v
2ImMwinding+winding→winding+winding|t=0 . (2.1)

Thus we turn our attention to calculating the four-point winding string amplitude.

It often happens that the energy scale needed to excite modes in certain dimensions

is much greater than the energy scale E under consideration. This may be because some

dimensions are physically very small,

MKK ∼
1

R
À E,

or because there are background fields present which create a similar energy hierarchy [8],

or even because the string carries an index in group space [9]. When one can make such a

separation of scales, it is useful to ‘compactify’ and average over these dimensions in the

scattering process. In the special case where the probability (2.1) can be factorized into a

noncompact part and a compact part, the latter acts effectively as a ‘volume factor’ V⊥,

diluting the probability:

P =
1

4E1E2vV⊥
2Im M4D.

Since the calculation of M in a general background is a nontrivial task, in [5] an estimate

of this effective volume was presented for strings in a six-dimensional confining background

based on the scaling of string worldsheet interactions,

1

V⊥
∼ 〈δ6(Y − Y ′)〉

=
1

(4π)3
√

det〈Y i(0)Y j(0)〉
.

A wound string in a confining background will acquire an effective worldsheet mass m2 of

order the background curvature, acting as an IR cutoff. Assuming a 4D UV cutoff of order

Λ, this implies a two-point function (no sum on i)

〈Y i(0)Y i(0)〉 ∼ α′

2
ln

(
1 +

Λ2

m2

)
. (2.2)

Here we present a more rigorous method, using the spacetime effective action. This

allows one to easily include all slowly-varying background fields [10] [11] [12], and can in

principle be carried out to any order in α′ by including higher-derivative terms in the action.
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The optical theorem is especially useful in this case because it allows one to compute the

reconnection probability entirely within the framework of the effective action.

In the case where M is not factored the reconnection probability would depend non-

trivially on the energy scale; investigation along these lines is in progress [13]. Both exam-

ples given here are factored.

3. 0B effective action

3.1 Setup and normalization

We wish to study the interaction probability of cosmic superstrings which we model as

wound fundamental strings. These appear in the spectrum of all string theories except

type I. It would be easiest to perform the calculation in the type II theory, except that the

lightest stable states have a polarization term in them making the scattering computation

more tedious. Since this would not affect the answer in the large-winding limit, we work

with the technically simpler tachyon winding modes (this is of course a misnomer, as the

field ceases to be tachyonic if the winding is more than a string length), which are usually

removed out of the type II spectrum through the GSO projection. To include these in the

spectrum we perform a reversal of the usual GSO projection and thus consider the ‘type

0’ string theories. Tseytlin and Klebanov have studied the effective action of type 0B [14],

written here, keeping only the tachyonic terms relevant to our discussion:

S =
1

4κ2

∫
d4xd6y

√
G
[
e−2Φ

(
1
2G

µν∂µT∂νT + 1
2m

2
TT

2
)

+W (T )
]

(3.1)

where x represents the 4 noncompact dimensions, y denotes the 6 compact dimensions, the

type 0 tachyon mass is set by m2
T = −2/α′ (which is different from the bosonic tachyon

mass), and W (T ) is the four-tachyon interaction term

W (T ) =

∫ 4∏

i=1

dDki
(2π)D

eikixW (k1, k2, k3, k4)T (k1)T (k2)T (k3)T (k4),

W (k1, k2, k3, k4) = −2π
Γ(−α′

4 s)Γ(−α′
4 t)Γ(−α′

4 u)

Γ(1− α′
4 s)Γ(1 + α′

4 t)Γ(1 + α′
4 u)

.

The only part of W that will be relevant is the large-energy forward scattering amplitude,

Ws→∞,t→0 → −
πα′

2

s2

t

(
α′s/4

)α′t/2
e−iπα

′t/4.

The effective action also contains additional terms coupling the tachyon to both sets of RR

fields (denoted Fn and F̄n), an extra one appearing due to the GSO reversal. Since the

coupling requires both sets be nonzero, and one is not present in the IIB theory, we will

not include these in our consideration. Additionally, the F5F̄5T coupling vanishes if F5 is

self-dual, which it is in the IIB theory. This is all reasonable because fundamental strings

should not couple to the RR fields.
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Figure 1: Cosmic superstring scattering, whereby two straight wound strings reconnect into a

single kinked closed string.

We use this action to compute the invariant scattering matrixM. In the ten-dimensional

case with only noncompact dimensions and no background, this is defined as

iM(2π)10δ(10)(
∑

p) = 〈T1, T2|e−iSint |T1, T2〉

where time-ordering is understood. Upon compactification the (2π)6δ(6)(0) for the compact

dimensions will be replaced with Veff . The states |T 〉 are eigenstates of the Hamiltonian,

which in position represention means they satisfy the equation of motion

(
∇µ∇µ − 2∇µΦ∇µ −m2

T

)
〈x, y|T 〉 = 0.

The normalization of |T 〉 is fixed by the requirement that 〈Tm|Tn〉 = δmn, which after

inserting the propagator from (3.1) becomes

1 =
1

4κ2

∫
d3xd6y

√
Ge−2Φ〈T |x, y〉 1

2E
〈x, y|T 〉

=
1

4κ2

∫
d3xd6y

√
Ge−2Φ |T (x, y)|2

2E
.

Since we are limiting ourselves to solutions which can be factored,

T (x, y) = φ(x)ψ(y),

the most convenient normalization is to demand

1 =

∫
d6y
√
G(y)e−2Φ(y)|ψ(y)|2 (3.2)

and so φ(x) will be normalized to its usual 4D value in the absence of any background:

1 =
1

4κ2

∫
d3x
|φ(x)|2

2E
.
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3.2 Winding modes

Now compactify x1, x2 on a torus of size L and skew angle θ (see Figure 1), so that the

tachyon field can be decomposed into winding modes:

T =
∑

n1,n2

Tn1,n2e
i[x1(n1+n2 cos θ)+ix2n2 sin θ]L/2πα′ .

Since wound strings are charged under the Kalb-Ramond field Bµν the derivative must

become a gauge-covariant derivative, we can think of B1µ and B2µ as two separate gauge

fields A
(1)
µ and A

(2)
µ under which the transverse coordinates of the string are charged.

Couplings to the gauge fields must now be introduced,

∂µ → Dµ = ∂µ − i(n1 + n2 cos θ)B1µ − in2 sin θB2µ.

The 0B effective action then becomes 8-dimensional with 2D compactification factor L2 sin θ,

S =
L2 sin θ

4κ2

∑

n1,n2

∫
dtdzd6y

√
G
[
e−2Φ

(
1
2 |DµTn1,n2 |2 + 1

2m
2
n1,n2
|Tn1,n2 |2

)
+W (Tn1,n2)

]

(3.3)

where

m2
n1,n2

=

(
L

2πα′

)2 [
(n1 + n2 cos θ)2 + n2

2 sin2 θ
]

+m2
T

is the mass of the winding string. The free state solutions to the theory are now given by

DµDµTn1,n2 − 2DµΦDµTn1,n2 = m2
n1,n2

Tn1,n2 .

The quantity that we are interested in is the forward amplitude for strings wound once

around each direction,

〈T1,0, T0,1|e−iSint |T1,0, T0,1〉.

This amplitude can then be factored into a noncompact part, which has already been

evaluated [5] [7], times an effective volume factor due to the compact wavefunction. This

allows us to define

M =M4D

∫
d6y
√
Ge−2Φψ∗1,0ψ

∗
0,1ψ1,0ψ0,1

Substituting this into (2.1) gives the reconnection probability

P = g2
sf(θ, v)

Vmin

V⊥

where

Vmin = (4π2α′)3, f(θ, v) =
(1− cos θ

√
1− v2)2

8 sin θv
√

1− v2
,

1

V⊥
=

∫
d6y
√
Ge−2Φ|ψ1,0|2|ψ0,1|2

and each ψ(y) obeys the normalization condition (3.2).
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4. Examples

4.1 Simple compactification

Consider the situation where the compact six dimensions are a simple torus of volume V ,

∫
d6y = (2πR)6 = V.

This must be chosen in an intermediate range so that we can both ignore the KK modes

(R <∼
√
α′) and also trust the effective action ((4π2α′)3/V ¿ 1). The propagator volume

integral will normalize the compact wavefunction to
∫
d6y|ψ(y)|2 = 1, so assuming that

there is no momentum in these dimensions and ψ is constant, the solution for each is simply

ψ(y) =
1√
V
.

Performing the volume integral in the compact amplitude then gives the expected result

1

V⊥
=

∫
d6y|ψ(y)|4 =

1

V

confirming that the intercommutation probability is suppressed by a factor of 1/V .

4.2 Warped compactification

Now consider a less trivial example, whereby the volume of the “compact” dimensions is

large but the background localizes the string wavefunction to produce an effective volume

(see Figure 2). A well-studied example of warped compactification is the Klebanov-Strassler

geometry [15] which has been used in the KKLMMT model of brane inflation [16]. In this

model the local geometry is R3× S3 with the warp factor a function only of r2 =
∑3

i=1 r
2
i :

ds2 = eA(r)ηµνdx
µdxν + e−A(r)

(
dr2

1 + dr2
2 + dr2

3 +R2
3dΩ2

3

)
.

The dilaton variation and Kalb-Ramond field are set to zero in this background. The

wavefunction is then given by (we will suppress n1, n2 indices)

∇M∇MT (x, y) = m2T (x, y).

The interaction with the background comes from the metric connection terms. Approxi-

mating the warp factor near the bottom of the throat as a quadratic potential,

eA ≈ a0 + a1r
2,

these combine to produce the equation of motion (µ denotes the four Minkowski dimensions,

i denotes ri on the R3, a denotes the angular coordinates on the S3)

[
e−A∂2

µ + eA
(
∂2
i − 5a1x

i∂i +
1

R2
3

∂2
a

)]
T (x, y) = m2T (x, y).

– 6 –
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y
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Figure 2: Any local minima in the warp factor eA (red) can be approximated as a quadratic

potential, which will have a gaussian ground state (blue).

We now further approximate eA ≈ a0 ¿ 1, allowing us to factor T into parts which

separately obey the equations

∂2
µφ(x) =

(
a0m

2 +
ε

a0

)
φ(x),

−
[
∂2
i − 5a1x

i∂i +
1

R2
3

∂2
a

]
ψ(y) =

ε

a0
ψ(y).

The first is the usual 4D wave equation but with mass rescaled due to the warping, plus

the KK mass term due to compactification. The second is a Schrodinger equation for the

compact space wavefunction. The Laplacian on the S3 will have eigenvalue −l(l + 2); we

will assume that the string remains in the ground state l = 0, and so has the 3D spherical

harmonic Y1,0,0(ya) = 1/
√

2π2. The operator acting on the R3 has solutions which are

isomorphic to the simple harmonic oscillator which we take to be in the gaussian ground

state. The complete normalized compact wavefunction is then

ψ(y) =

√
a0

2π2R3
3

(
5a1

2π

)3/4

e−5a1r2/2.

This yields an effective volume

1

V⊥
=

∫
d6y
√
G|ψ|4 =

a0

2π2R3
3

(
5a1

2π

)3/2

.

Thus P increases as a1 gets larger and the wavefunction is more confined. This agrees with

the previous qualitative estimate (2.2) in the long-wavelength limit of (Λ/m)2 = 5a1α
′ ¿ 1.

The warping parameters for the KKLMMT inflation model are then determined by the scale

of inflation and the flux integers,

a0 ∼ 10−2, a1 ∼
a0

2gsMα′
, R3 ∼

√
gsMα′.

– 7 –
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Combining these factors we have an effective volume

1

V⊥
∼ 53/2 10−5

16π7/2(gsMα′)3
.

5. Discussion and conclusion

In this article we have generalized the computation of basic cosmic superstring reconnection

probabilities for a general background. We have considered only very simple examples but

it would be instructive to study more sophisticated backgrounds and to higher order in α ′.
It would be especially interesting to consider nonfactored amplitudes, as this would allow

a sensitive probe of the extra dimensions at energies inaccessible to accelerators.

Ideally we would be able to use the same technique to calculate the effect of the

background for all types of cosmic superstrings, fundamental as well as (p, q) [17]; as it

stands, the methods are completely different [5] [18]. Though we have used the effective

action of the perturbative 0B string theory, it is known that IIB can accomodate the

nonperturbative (p, q) strings, so we conjecture that the 0B action should be capable of

this in our approach. The main difference would seem to be that the tachyon would couple

to both the NSNS and RR two-forms, though it is unclear precisely how this would work

since there are now two sets of RR fields. In this case the wavefunction for the (p, q) string

is to leading order in gs simply ψ(y) = δ(y − y0), where y0 will depend on the charges p

and q coupled to the two-form background fields.

Finally the effect of the background may also prove important in string and brane gas

studies [19] [20], where the decompactification rate of the universe depends on winding

mode interaction rates.
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